Abstract

The large number and heterogeneity of models
generated during the development of software systems
- may cause difficulties to identify common and variable
" aspects among applications, and reuse of core assets
available under model driven architecture. In this
paper, we advocate the use of traceability relations to
support model driven architecture. We proposeé a rule-
“based approach to allow for automatic generation of
traceability relations with well-defined semantics
between different-typed models. In the approach, the
- rules are represented and the models of concern are
represented in XML. Our approach supports various
- types of traceability relations. We present a traceability
- reference model with the different types of traceability
. relations and documents identified in our work, and

£ . describe our approach for automatic generation of

. traceability relations. A prototype tool has been
~“developed to demonstrate and evaluate the approach.

- 1. Introduction

" ‘Model driven architecture (MDA) advocates the use of
- system models in the various phases of software
development process in order to facilitate the creation
of families of systems. More specifically, it promotes
the separation of system functionality from system
implementation on a specific platform. In order to
support model driven architecture it is necessary to
epresent the various models in well defined notations,
organise systems in terms of different models, support
reuse of best practices to allow for enterprise scale

E allows for the (semi-)automatic generation of code from
£ abstract models [4]. '

"As a result, a large number of different models are
¢ated when developing software systems following
MDA approach. In such setting, it is important to
entify and analyse the common and variable aspects
‘the different models in order to engineer reusable
d adaptable components and, therefore, support the

Jespite its importance and advances in the area, the
Support for common and variable aspects among

software development, and develop approaches that

velopment of enterprise-scale applications. However, .

The 7th International Conference on e-Business 2008 (INCEB 2008) ' 115

Software Traceability for Model Driven Architecture

Waraporn Jirapanthong
Faculty of Information Technology
Dhurakij Pundit University
110/1 -4 Prachachuen Road,
Laksi, Bangkok 10210, Thailand
waraporn @it.dpu.ac.th

© +66(0)9547300 ext. 207

applications and the engineering of reusable and
adaptable components are not easy tasks. This is mainly
due to the large number and heterogeneity of models
generated during the development of systems. Other
difficulties are concerned with the (a) necessity of
having a basic understanding of the variability
consequences during the different development phases
of software products by all involved parties, (b)
necessity of establishing relationships between models

. in different levels of abstractions, and (c) poor support

for handling complex relationis among the models.

The above difficulties are also present when
developing software product family applications. In the
last years, various methodologies and approaches have
been proposed to support the development of software
systems based on product family development [10, 12,
16]. These methodologies and approaches are also
known as domain-engineering approaches and
emphasise a group of related applications in a domain,
instead of single applications. More recently, some
authors have proposed the use of model driven
architectures to assist with product family development
[7, 13].

In contrast, requirements traceability has been
recognised as an important activity in software system
development [11, 27, 28). In general, traceability
relations can improve the quality of the product being
developed, and reduce the time and cost associated with
the development. In particular, traceability relations can
support evolution of software systems, reuse of parts of
the system by comparing components of the new and
existing systems, validationr that a system meets its

‘requirements, understanding of the rationale for certain

désign and implementation decisions in the system, and
analysis of the implications of changes in the system.

. However, support for traceability in software
engineering environments and tools are not always
adequate [28]. Some existing approaches assume
manual generation of traceability relations should be
established manually [29, 30), which is error-prone, .
difficult, time consuming, expensive, complex, and
limited on expressiveness. Therefore, despite its
importance, traceability is rarely established. In order to
alleviate this problem, more recently, other approaches
have been proposed to support semi- or fully-automatic

-
The 7th International Conference on e-Business 2008 (INCEB 2008) _ 116

generation of traceability relations [1, 6, 9, 17, 21, 26].
However, in the majority of these approaches, the
generated traceability relations do not have well-
defined semantic meanings necessary to support the
benefits provided by traceability.

In this paper, we propose to use traceability to
support model driven architecture and cope with the
different types of models that are generated during the
development of software systems. More specifically,
we advocate the use of traceability relations to assist
with the identification of common and variable
functionality in different models and, therefore,
increase the reuse of core assets that are available and
reduce inconsistencies between systems.

In order to allow for automatic establishment of
traceability relations we propose a rule-based approach
in which traceability relations between different types
of models are generated. Particularly, the types of
models being applied in this paper support specifying
different types of models during software development
i.e. requirements, analysis and design models.

In this paper, our work focuses on the issues of
automatic generation of traceability relations between
models produced during the software development. We
propose the types of traceability relations to supporting
an approach of MDA and present a traceability
refererice model with seven different types of
traceability relations among three types of models
concerned with various methodologies. Other
differences to our previous work dre the development
of new set of traceability rules and enabling of
traceability relations to supporting MDA approach.

The remaining of this paper is structured as follows.
In section 2, we describe a traceability reference model
with the main document models and traceability
relation types identified in our work. In section 3 we
present an overview of our approach, describe the
traceability rules, and- illustrate the work through
examples. In section 4 we discuss some implementation
issues and evaluate the work. In section 5 we describe
related work. Finally, in section 6 we summarise our
approach and discuss directions for future work.
Throughout the paper we illustrate our work with
examples based on study, analysis, and discussions of
mobile phone domain, and ideas in [23, 24].

2. 'Tréceability Referencé Model

As in [16], a large number of models are required when
developing a set of product family systems. A feature-
based approach is important to support domain analysis
and domain design, enhance communication between
customers and developers in terms of product features,
and assist with the development of the family
architecture. On the other hand, an object-oriented

approach is necessary to assist with the development of

the various members in the family. Moreover, those

two approaches are applied due to their simplicity,
maturity, practicality, and extensibility characteristics.
Specifically, our work concentrates on document

" models i.e feature and class diagrams.

Table 1 presents the set of documents used in our
work. We assume that for each family of software
systems being developed, there is a single instance of
each model type at the architecture level (i.e. feature
models), but there may exist various instances of the
models in the member level (i.e. use cases and class
diagrams).

Table 1. Document models used in our approach

Family Architecture Level | Feature model

Family Member Level Use Cases

Class diagram

2.1 Document Meodels

As below, we briefly describe the document models
used in our approach.

Feature Model: A feature model is a document that
describes the common and variable aspects (features) of
a family of applications in a domain. A feature model is
composed of many features. Each feature has a name, a -
description of the feature in natural language sentences,’
and a description of possible issues and decisions that
may have been raised during the feature analysis
process.

As proposed in [19], the features can be classified
into four different types namely, (i) capability, (ii).
operating environment, (iii) domain technology, and
(iv) implementation technique in the feature model. A
feature can also be (i) mandatory, when it must exist
among applications in a domain, (ii) optional, when it is
not necessary in some applications in a domain, or (iii)
alternative, when no more than one feature can be
selected for an application. Relationships among
features can be of type (i) composed_of, (ii)
generalisation/specialisation, and (iii) implemented_by.

Use Cases: We propose to represent functional
requirements of the various applications” as use-cases.
Each use case contains a unique identifier, information’

about the family domain (System attribute) and family
member identifier. A use case has also title, description,
level within a system, pre- and post-conditions that |
must be satisfied before and after its execution |
respectively, - primary_actor, secondary_actors,
flow_of _events describing the user actions that trigger
the use case, exceptional_events describing the events
that not always occur in the use case, and

superordinate_use_case and subordinate_use_case.

Class Diagrams: The design of each member in a
family is described in UML class diagrams. These
-diagrams are documented according to the standard in
[25].

2.2 Traceability Relations

Based on our study and experience with software
traceability, and types of traceability relations proposed
in [14, 17, 22, 27, 28] , we have identified different
types of traceability relations between the various
documents that support MDA approach. Those relations
are classified in six different groups, as follows.

Group 1: Relations between models in the architecture
level and models in the application level (e g.
feature_model vs. use_case).

Group 2: Relations between models of the same type
for different applications (e.g. AP1_class_diagram vs.
AP2_class_diagram). -

Group 3: Relations between models of different types
for the same application (e.g. APl _use_case vs.
‘AP1_class_diagram).

Group 4: Relations between models of different types
for different applications (e.g. AP1_use_case vs.
AP2 _class_diagram).

‘Group 5: Relations between models of the same type
for the same application (e.g. AP1_use_case_UCI vs.
AP1_use_case_UC2).

Each of these groups can assist software
‘development from different perspectives. For instance,
Telations in group 1 assist with the identification of
susable components in models; relations in group 2
“and group 4 support comparisons between the various
plications in an architecture; relations in group 3
sist with better understanding of each application in
architecture; and relations in group 5 allow for the
entification of evolution aspects in an application and,
efore, supports the decision of when a new
pplication should be created in an architecture.

Table 2 presents a summary of the reference model
ing proposed in a tabular format. In the table, each
!l contains the different types of traceability relations
may exist between the models described in the row
column of that cell. In the table we do not represent
“exact elements that are related in the different
Odels; but represent the types of the models. The

c(?lumn [j]. Thus, a relation type rel_type in a cell
] signifies that “[i] is related to [j] though

Itection of the relation is represented from a row [if to

The 7th International Conference on e-Business 2008 (INCEB 2008) 117

rel_type” (e.g. “‘class diagram satisfies feature model”).
The traceability relations that are bi-directional appear
in the two correspondent cells for that relation. A brief
description of these-relations is given below.

Satisfiability: In this type of relation an element el
satisfies an element €2, if el meets the expectation and
needs of e2. A satisfies relation may hold between (a)

" an operation or attribute of a class in a class diagram

and the description of a use case or feature in a feature
model.

Encompass: In this type of relation an element el
encompasses an element e2, if el includes the content
of e2. This relation exists between feature models and
use cases de when a use case includes a feature in the
family of applications.

Dependency: In this type of relation an element el
depends on an element e2, if the existence of el relies
on the existence of e2, or if changes in €2 have to be
reflected in el. A depends relation may hold between
(a) the description of a use case and the description of a
feature in a feature model; (b) an operation or attribute
of a class in a class diagram and the description of a use
case or feature in a feature model.

Overlap: In this type of relation an element el overlaps
with an element €2, if el and e2 .refer to common
aspects of a system or its domain. This is a bi-
directional relation. As shown in Table 2 overlap
relations exist between (a) feature models and class

“diagrams; (b) use case and class diagrams.

Evolution: In this type of relation and element el
evolves to an element €2, if el has been replaced by e2
during the development, maintenance, or evolution of
the system. An -evolves relation occurs between
document models .of the same type for the same
application in a family (group 5). This relation may
hold between elements in (a) use cases’ and (b) class
diagrams.

Stmilar: This type of relation occurs between document
models of the same type for different applications in a
family (group 2). This relation assists with the
identification of common aspects between the various
members in a family. It is a bi-directional relation-that
exists between (a) use cases and (b) class diagrams. A
similar relation between elements el and e2 dependson
the existence of another relation between el and e2. For
instance, a use case ucl is similar to a use case uc2, if
both ucl and uc2 hold an encompass relation with
feature f1.

Different: This type of relation also occurs between
document models of the same type for different
applications in a family (group 2). This relation assists
with the identification of variable aspects between the
various members in a family. It is a bi- directional
relation that exists between (a) use cases and (b) class

" diagrams. A different relation between an element el

and e2 depends on the existence of another relation
between el -and e2. For instance, a use case ucl is
different from a use case uc2, when there are two
subclasses c¢1 and ¢2 of the same parent class ¢, where
cl encompasses ucl and c2 encompasses uc2. More
specifically, consider use cases related to the display of
text message (ucl) and display of graphical message
(uc2) on mobile phones; subclasses TextScreen (c1) and

GraphicalScreen (c2), of parent class ScreenClass (c). .

Assume ~ that ScreenClass has operation
DisplayMethod(), which is inherited by classes-c1 and
c2. In this case, ucl and uc2 are of the same general
purpose (display of message), but with different
specific aspects (text and graphical messages).

Table 2. Traceability Reference Model

[Feature Model [Use Case Class
' IDiagram
[Feature Overlaps '
Model
lUse Case | |Encompasses [Similar Overlaps
IDepends_on |Different '
[Evolves
Class Satisfies Satisfies \Similar
Diagram ' \Depends_on |Depends_on [Different
Overlaps Oveﬂaps [Evolves

3. Enabling Traceability Relations

Overview. In order to support automatic generation of

the .traceability relations described in Section 2, we
propose to use a rule-based approach. Rules assist and
automate decision making, allow for standard ways-of
representing knowledge that can be used to infer data,
facilitate the construction of traceability generators for
large data sets, and support representation of
dependencies between elements in the documents.

Figure 1 presents an overview of the process of our

approach. Initially, the models are translated into XML -

. format by using an XML translator, based on the XML
-Schemas proposed for the documents, whenever the
* tools used to create the documents do not generate them
in. XML originally. The XML translator is .also
. responsible to annotate the textual sentences in the
. documents with part-of-speech (POS) assignments. The
POS are represented as XML tags and generated as
XML-based documents. The XML-based documents
-are used as input to our traceability generator that
creates traceability relations based on rules. ,

The traceability relations are also represented in
XML. This is important to preserve the original
documents, permit the use of these documents by other

The 7th Internatibnal Conference on e-Business 2008 (INCEB 2008) 118

- (RuleType), and descriptions of the types of document

application and tools, and allow these relations to be °
used to support identification of other traceability
relations that depend on the existence of previously
identified relations using the same traceability
generator (e.g. similar and different relations). In the
figure, this is represented by using the XML-based-
relationships documents as input to the traceability
generator.

Class Diagram| :I

Feature Model

Use Case

XML Translator

XML-based
documents

Traceability
Generator

_ Traceability

relationships

Fig. 1. Overview of the approach

3.1. Traceability Rules

The traceability rules are composed of four main parts;
as described below. An example of a traceability rule
for encompass. traceability relation between. use cases
and features is presented in Figure 2.

Part 1: It consists of the rule ide/ntiﬁcation and contans}r
a unique RuleID, description of the type of the rule

models associated with the rule (DocTypel, DocType2).
The rule type is based on the type of traceability
relation generated by the rule.

Part 2: It consists of declaration statements of variable
used in the rule. For the example in Figure 5 we have.
four -variable declarations for x, y, I and 2. Th
variables can be related to each other.

Part 3: It consists of statements which identify
elements of the model documents to be compared an
bind these elements to variables. At the implementatio

" level; the elements using XPath expressions associated
. with placeholders that represent the types of document
models. The placeholders for the document models to
be traced are automatically substituted by specific
> model names. The condition part of the rule that should

12

, parameter checkDistanceControl, returns “true” or

“false” if two or more words are associated in a textual
paragraph, depending on how distant the words are in a
sentence and what are the other part-of-speech
assignments separating these words. The condition part
takes into consideration the XML POS-tags in the
" textual parts of the documents and specifies ways of
. matching syntactically related terms in the documents.

TraceRule RuleID="R1"
RuleType="encompass”
DocTypel="Use Case”
DocType2="Feature Model”
" PreCondition

assign x = Use_Case

assign y = Feature

assign tI = a component in x
assign t2 = a component in'y

Condition

Satisfy(tl, 12)

Action

Create

Relation type = "encompass”
Element x/Title

Element y/Feature_name

be satisfied in order to activate the action part. The
condition part uses user-defined functions i.e. satisfy.
. function which contains- functions e.g. findSynonym,
* returns a list of synonyms for the word passed as a

Fig. 2. Example of a traceability rules for encompass
' relation

art 4: It describes the action part of the rule and
pecifies the action to be taken if the conditions in Part
are satisfied. In the consequence part, we describe the
of traceability. relation to be created, and the
ements that should be related through it .in the
ocuments described in the PreCondition part of the
le. In the action part, the content of each element is
cated and together compose with other elements as a
latlon The implementation of an action consists of
riting the information in the XML-based-relationships

- An example of the satisfaction of rule R1 exists
een use case UC1 and feature. In this case, an
ompass relation is created. Flgure 3 shows the result
rule R1.

The 7th lnterrﬁational Conference on e-Business 2008 (INCEB 2008) - 119

<Relation_Document> -
<Relation fype = "encompass">
.<Element Document="file:///c:/UseCase_UC1.xml">
<Title> <VVG>Sending</VVG>
<NNO>Data</NNO></Title>
</Element>
<Element Document="file:///c:/Feature_ MP.xml">
<Feature_name><VVG>Messaging</VVG>
<NNl>Service</NN1></Feature_hame>
</Element>
</Relation>

</Relation_Document>

Fig. 3. Result of traceability rule R1

In Figure 4 we show an example of a traceability
rule for similar relations between use -cases. This
traceability rule depends on the existence of previously
identified traceability relations (e.g. encompass)
between use cases and feature model, described in the
XML-based-relationship document. The rule in Figure
4 compares if there are two relations of type encompass
such that the feature names are the same and the use

“TraceRule RuleID="R2"
RuleType="similar"
DocTypel="XML-Based-Rel”
DocTypeZ—’ XML-Based-Rel”
PreCondition
assign x = XML- based—relatlonsths document
assign y = XML-based-relationships document
assign tl = a traceability relation in x :
assign t2 = a traceability relation in'y
assign cl = a document model in t]
assign c2 = a document model in t1
assign c3.= a document model in 12
: assign ¢4 = a document model in 12
Condition)
Szmzlar(relationshipType(tl),
relationshipType(12),
cl,
c2,
c3,
c4)
Action

Create
Relation type = "similar”
" term = relationshipType(tI)
Element documémModel(cl)_
Element dpcumemModel(cZS)
- Element documentModel(c2)
Fig. 4. A traceability rule for similar relation

- The 7th International Conference on e-Business 2008 (INCEB 2008)

case titles are different in these relations. The result of

this rule contains the related elements (the names of the |

use case model) that are identified and generated as a
traceability relation.

Suppose that a new mobile phone MP2 is proposed
with -part of use case UC2. This new product differs
from MPI1, since it supports General Packet Radio
Service (GPRS), but it shares some functionality with
MP1.

- Based on rule R1, the traceability generator also
creates an encompass relation between feature
Messaging Service and use case UC2. Consider the
deployment of rule R2 (Figure 4). As shown in Figure
5, Rule “R2” results in the generation of a similar
relation between use cases UCI and UC2, since they
both encompass feature Messaging Service

<Relation_Document>
<Relation fype = "similar” term= "encompass” >
<Element Document="file:///c:/UseCase_UCI1.xml”>
<Title> <VVG>Sending</VVG>
<NN0>Data</NNO></Title>
</Element>
<Element. Document="file:///c:/UseCase_UC2.xm}”>
<Title> <VVG>Sending</VVG>
<NNO>Text</NNO>
<NNO>Message</NNO></Title>
</Element> ;
<Element Document="ﬂle:///c:/Feature_MP.me”>
<Feature_name><VVG>Messaéing</V VG>
<NN1>Service</N N1></Feature_name>
</Element> '
</Relation>

</Relation_Document>

Fig. 5. Result of traceability rule.R2

4. Implementation and Evaluation

In order to evaluate and demonstrate our approach we’
have implemented a prototype tool. We envisage the
use of our tool as a general platform for automatic

generation ‘of traceability relations and support for

model driven architecture. The tool = has been
implemented in Java and uses Saxon process [31]. The
extra functions in our approach have been implemented
in Java.

The tool allows the users to select specific models to be
traced, but can also establish traceability relations

. traceability relations to support various softwar

“classifications have been proposed for different types of

120

between all the models generated for a family of:
systems. For each pair of types of selected models, or |
models developed for a system, the traceability
generator component of the tool identifies the
traceability rules associated with those models and -
generate the traceability relations.

The approach provides semantic for the differen
types of traceability relations that may exist between
the models of our concern, and avoids misconception ‘o
the relations by the stakeholders.' Moreover, the
traceability rules used in the tool allows for generation
of relations between specific parts of the models (fin
granularity), which offers better comparison between
the models and identification of the particular assets
that can be reused or need to be developed. The
traceability rules and relations involve documents in :
both family architecture and member - level. The °
-automatic generation of these relations can provide the
deployment of traceability in industrial settings and -
enhance enterprise-scale system development. The use
of the tool facilitates the comparison of large number o
complex and heterogeneous document types in a
standard and efficient way, supporting scalability of the
approach.

Moreover, the tool relies on grammatical structures
present in -the natural language sentences, which are
taken into consideration by the traceability rules. The
set of traceability rules should be expanded to allow the
generation of relations that consider all possible
grammatical structures and, therefore, enhance the
recall of the approach. The tool relies on the
grammatical structures. '

The tool supports the generation of a large number o
traceability relations. In-order to facilitate the use of the
approach, it is necessary to incorporate ways of
prioritising the generation and display of the
traceability relations, and develop appropriate graphical
user interfaces to visualise the relations. Currently, we: -

are developing these graphical user interface :
applications.
5. Related work

Many approaches and techniques to support software
traceability have been proposed. These approaches and
techniques can be classified in four main groups: (a)
study and definition of different types of traceability
relations; (b) support for the generation of traceability
relations; (¢) developnient of architectures, tOols, and’
environments for the representatlon and maintenance of
traceability relations; and (d) study of how to u

development activities.

Various reference models, frameworks, and

traceability relations [11, 14, 17, 20, 22, 27, 28].. The
classifications are based on different aspects, ranging

from the types of the related.énefacts {9, 15, 17,27,], to

:f ' the use of traceability information~in different
y requirements management activities such as
- understanding, capture, tracking, evolution,
d verification, and reuse [6, 11, 22], to impact analysis

(34].

However, despite the reference models and
classifications there is-still a lack of standard semantic
definition for the various types of relations. Many
existing tools support the representation of the different
types of relations, but the interpretation of these
relations depends on- the stakeholders. The lack of
standard semantics causes confusion when interpreting
relations and difficulties to develop tool for automatic
generation of traceability relations. Moreover, very few
classifications for traceability relations in the scope of
product family development have been proposed. Some
approaches have outlined the use of traceability
relations to support product family development [3, 14,
17, 29, 33]. However, these approaches do not provide
ways of generating traceability relations automatically.
The traceability relation classification proposed in this
paper contributes to fulfil the lack of standard semantic.
In addition, the tool provides support for interpretation
of the automatic generated relations. i

The majority of existing tools for the generation of

traceability relations offer manual generation of
relations based on the use of sophisticated visualisation,
display, and navigability components [8, 30]. However,
this is error-prone, difficult, time consuming, and
expensive, - resulting in .- the rare deployment of
{traceability relations. Other approaches to support semi-
or fully-automatic generation of traceability relations
have been proposed [1, 6, 9, 21, 26). However, none of
_these approaches support generation of relations for all
the.types of models supported by our approach.
" The approaches to support representation and
- maintenance of traceability relations range from the use
of centralised databases [8, 26, 30] and software
repositories [27], open hypermedia architecture [32],
mark-up based documents [14], to event-based
architecture [6]. As in our previous approach [15], the
-tool represents the generated traceability relations as
XML documents avoiding changes in the original
ocuments and supporting generation of traceability
elations that are dependent on existing traceability
elations by using the same generator tool.

tages of the software development life-cycle to assist
with various activities. Examples of these activities are
hange impact analysis, system validation and
erification, system reuse, and system understanding {2,
» 6, 18, 22, 34]. The existing approaches have
ontributed to the use of traceability relations in various

pproach is concerned with the automatic generation of
different types of traceability relations and the use of
these relations to support software development by
dentifying reusable assets.

- Software traceability has been used in different

tivities in software development. The novelty of our -

.The 7th International Conference on e-Business 2008 (INCEB 2008) 21

6. Conclusion and future work

In this paper we described a rule-based approach to
support generation of traceability relations between
document models which are created during the software
product line applications development. It is believed
that the traceability relations can support to reuse the

_existing models for developing new application in the

same domain. The relations between existing document
models are identified to present the semantics among
models. Those relations assist stakeholders to better
understand the semantics of the models: Consequently,
the models can be reused and adapted more effectively
and efficiently. The idea is driven to support the MDA
approach.

We presented a traceability reference model
including seven types of traceability relations and three
types of documents. We have adopted an extension of
XML query language to identify and describe the
traceability rules.

Currently, we are extending the set of traceability
rules in our approach to identify the proposed
traceability relations and enhance recall of the-
approach. We are identifying and implementing
necessary functions, developing a graphical interface to

facilitate visualisation of the generated traceability

relations, and an editor to support the creation of the
traceability relations. We are also investigating ways of
prioritising the generation and display of the relations,
evaluating the approach in real industrial environments,
and extending the work to support traceability for
implementation phase of software development.

References

[11 Antoniol G., Canfora G., Casazza G., De Lucia A., Merlo E.,
"Recovering Traceability Links between Code and
Documentation”, IEEE Transactions on Software Engineering,
28(10), 970-983, October 2002 AR 4

[2] Berg, K., and J: Bishop, “Tracing Software Product Line

. Variability - From Problem to Solution Space”, SAICSIT 2005,
Pages 111-120.) ’ -

{31 Biddle R., Noble J., and Tempero E., “Supporting Reusable Use
Cases”. In Proceedings of the Seventh International Conference
on Software Reuse, 2002.

" [4] Brown A., “An Introduction to Model Driven Architecture”.

http://www-
106.ibm.com/developerworks/rational/library/3100.html.
[SI Cockburn A., "Structuring Use-Cases With Goals", JOOP, Sep-
Oct 1997. i
[6] Cleland-Huang J.; Chang C.K., Sethi G., Javvaji K., Hu H., Xia
1., "Automating Speculative Queries through Event-based
= Requirements Traceability”, proc. of the IEEE Joint
International Requirements Engineering Conference, Essen,
Germany, September 2002.
[7] Deelstra S., Sinnema M., van Gurp J., Bosh j., “Model VDriven
Architecture as Approach to Manage Variability in Software
. Product Families”. Proceedings of the Workshop on Model
Driven Architecture: Foundations and Applications (MDAFA
2003), pp. 109-114, CTIT Technical Report TR-CTIT-03-27,
University of Twente, June 2003.
(8] DOORS. . Telelogic
www_telelogic.com/products/doors.
[9] Egyed A., "A Scenario-Driven Approach to Trace Dependency

DOORS,

The 7th International Conference on e-Business 2008‘ (INCEB 2008)) 122

Analysis”, IEEE Transactions on Software Engineering, Vol.9,
" No.2, February 2003. - :

[10] FODA. Feature Oriented Domain Analysis.
www.sei.cmu.edw/domain-engineering /FODA html

[11] Gotel O. and Finkelstein A., "An Analysis of the Requirements

. Traceability Problem"”, First International Conference on
Requirements, 1994. - .

[12] Griss M.L., Favaro J., d’Alessandro M., “Integrating Feature
Modeling with the RSEB”, Proceedings Fifth International
Conference on Software Reuse”, 1998. o

[13] Haugen O., Moller-Pedersen B., Oldevik J., -and Solberg A.,
“An MDA-based Framework for Model-driven Product
Derivation”. Proceedings of the Eighth IASTED Conference on
Software Engineering and Applications (SEA), USA, November
2004.) .

[14] Jirapanthong W. and A. Zisman, “XTraQue: Traceability for
Product Line Systems”, Software and. Systems Modeling
Journal, DOI 10.1007/S10270-007-0066-8, pp 1619-1374
(online, September 2007), pp 1619-1366 (print, to appear).

[15] Jirapanthong, W., “An approach to software artefact
specification for supporting product line systems”, ISBN:
9789746715741, Dhurakij Pundit University, Bangkok, 2008.

[16] Kang K., "FORM:" a feature-oriented reuse method with
domain-specific architectures”, in Annals of Software
Engineering, Vol. 5, pp. 354-355. :

[17] Kim, S. D, S. H. Chang, and H. J. La. 2005, “Traceability Map:
Foundations to Antomate for Product Line Engineering”, 3rd
ACIS International Conference on Software Engineering
Research, Management & Applications(SERA0S), Pages 274-

281.,2005.
[18] Lavazza L, Valetto G, "Requirements-based Estimation of
Change Costs”, Empirical Software Engineering - An

Intemnational Journal, 5(3), November 2000

[19] Lee K., Kang K.C., Chae W., and Choi B.W., “Feature-based
Approach to Object-Oriented Engineering of Applications for
_Reuse”, Software-Practice and Experience, 2000, 30:1025-1046.

[20] Lindval M. and Sadahl K., “Practical Implications of

' Traceability”, Software Practice and Experience, Vol. 26, No.
10, pp 1161-1180,1996.

[21] Marcus A., Maletic J.L, "Recovering Documentation-to-Source-
Code Traceability Links using Latent Semantic Indexing”,
ICSE, 2003

[22] Mohan, K. and Ramesh, B., “Managing Varability with
Traceability in Product and Service Families”, Proceedings of
the' 35" Annual Hawaii International Conference on System
Sciences (HICSS), 2002.

[23] Nokia. http://www.forum.nokia.com/main.html.

[24] OMA. Open Mobile Aliance.
www.omg.org/technology/documents/formal/xmi.htm.

[25] OMG. XML Metadata Interchange (XM]).

: www.omg.org/technology/documents/formal/xmi.htm.

[26] Pinheiro F., Goguen J., "An Object-Oriented Tool for Tracing
Requirements"”, IEEE Software, 52-64, March 1996. ’

[27] Pohl K., "Process-Centered Requirements Engineering”, John

" Wiley & Sons, Inc., 1996 s ’

[28] Ramesh B. and Jarke M., "Towards Reference Models for
Requirements Traceability”, IEEE Transactions on Software
Engineering , Vol. 37, No 1. January 2001.

[29] Riebisch M., Plilippow I., “Evolution of Product Lines Using
Traceability”, OOPSLA 2001 Workshop on Engineering

- Complex Object-Oriented Systems for Evolution, Florida.

[30] RTM. Integrated Chipware. www.chipware.com.

[31] Saxon. Saxonica. http://saxon.sourceforge.net/.

[32] Sherba S.A., Anderson K.M., and Faisal M., “A Framework for
Mapping Traceability Relationships”, Proceedings of the 2™
International Workshop on Traceability in Emerging Forms of
Software Engineering (TEFSE 2003), Canada, September 2003.

[33] Van der Linden, F., “Product Family Development in Philips
Medical Systems”, Dagstuhl Event 03151, April 2004.
www.dagstuhl.de/03151/Titles/index.en.phtml .

-[34] Von Knethen A., “Automatic Change Support based on a Trace
Model”, Proceedings of the 1* International Workshop on
Traceability in Emerging Forms of Software Engineering
(TEFSE’02), UK, 2002.

